Workshop Introducing SQL: A Foundation of Data Analytics

Robb Sombach University of Alberta Alberta School of Business

EDMONTON·ALBERTA·CANADA

Agenda

- Introduction
 - Why SQL?
 - What about Python? R?
 - Data Analytics
- Relational Database
 - What is a database?
 - Terminology
 - SQLite
 - Exercise 1

- SQL
 - Data Definition Language (DDL)
 - Exercise 2
 - Data Manipulation Language (DML)
 - Exercise 3
- Open Data Portal
 - How I prepared for today

Robb Sombach

- Work Experience
 - 15+ years working in the IT industry
 - 10+ years Self-Employed IT Consultant
- IT Positions
 - Systems Analyst / Business Analyst
 - Database Administrator (Oracle / SQL Server)
 - Network Administrator
 - Developer

Robb Sombach

- Teaching Experience
 - 5 years teaching at NAIT
 - Computer Systems Technology (CST)
 - Digital Media and Information Technology (DMIT)
 - 6+ years teaching at University of Alberta
 - Technology Training Centre
 - Alberta School of Business

Resources

All Workshop files can be downloaded here

http://bit.ly/odd_2019

Introduction

Workshop

Introducing SQL: Foundation of Data Analytics

Goals

- Introduce relational database concepts
- Provides hands-on, real world database experience using data from the City of Edmonton Open Data Portal
- Foster a collaborative workshop
 - Please interupt and ask questions

Why SQL?

- Simple
- Accessible
- Applicable
- Powerful
- Pervasive
- Valuable
- Universal

🗐 Ei	ile <u>E</u> dit <u>S</u>	Şelection <u>V</u> iew <u>G</u> o <u>D</u> ebug <u>T</u> erminal <u>H</u> elp abcschool.sql - Visual Studio Code — — >
r)	create_	_student_login_and_databases.sql 🛢 m412.sql 🛢 abcschool.sql 🗙 🎞
_	88);
ρ	89	CREATE TABLE SUBJECT_AREA (
~~	90	SUBJECT_ID DECIMAL(2) NOT NULL,
Ŷ	91	SUBJECT_NAME VARCHAR(30) NOT NULL,
0	92	SUBJECT_EFF_DATE DATETIME NOT NULL,
8	93	SUBJECT_EXP_DATE DATETIME,
63	94	SUBJECT_TAX_PROFILE_CD VARCHAR(1) NOT NULL,
Ē		SUBJECT_CERTIFIED VARCHAR(1) NOT NULL,
	96	SUBJECT_AUTH_LIMIT DECIMAL(9),
	97	UPDATE_TS DATETIME NOT NULL,
	98	PRIMARY KEY (SUBJECT_ID)
	99);
	100	CREATE TABLE TRAINING_SITE (
	101	SITE_ID DECIMAL(2) NOT NULL,
	102	LOCATION VARCHAR(12) NOT NULL,
	103	SITE_EFF_DATE DATETIME NOT NULL,
	104	SITE_EXP_DATE DATETIME,
	105	SITE_MAX_SIZE DECIMAL(3) NOT NULL,
	106	UPDATE_TS DATETIME NOT NULL,
	107	PRIMARY KEY (SITE_ID)
	108);
	109	
	110	<pre>INSERT INTO ATTENDANCE(OFFERING_ID, STUDENT_ID, REGSTRN_MADE_DATE, REGSTRN_CANC_DATE, EVALUATION, PENALTY, FINAL_MARK, AMOUNT_PAID, UPDATE_TS) VALUES (9111, 98351, '2013-12-21 00:00:00.0', null, '7', '0', '7', 600, '2014-01-05 18:14:15.0');</pre>
	111	<pre>INSERT INTO ATTENDANCE(OFFERING_ID, STUDENT_ID, REGSTRN_MADE_DATE, REGSTRN_CANC_DATE, EVALUATION, PENALTY, FINAL_MARK, AMOUNT_PAID, UPDATE_TS) VALUES (9111, 84853, '2013-12-11 00:00:00.0', null, '6', '1', '5', 600, '2015-01-05 19:14:15.0');</pre>
\$	112	INSERT INTO ATTENDANCE(OFFERING_ID, STUDENT_ID, REGSTRN_MADE_DATE, REGSTRN_CANC_DATE, EVALUATION, PENALTY, FINAL_MARK, AMOUNT_PAID, UPDATE_TS) VALUES (9112, 98351, '2014-06-03 00:00:00.0', null, '5', '0', '5', 700,
😣 138	A 0	Ln 1, Col 1 Tab Size: 4 UTF-8 LF SQL MSSQL Disconnected 😌 .

Why not Python? R?

- Difficult for beginners
- Complicated syntax
- Requires programming knowledge (logic, algorithms)
- Is SQL better than Python or R?
 - SQL is good for some things
 - Python/R is good for other things
 - Compliment each other
- SQL is a great starting point

<u>∮</u> _Eil∉	e <u>E</u> dit <u>S</u> e	lection <u>V</u> iew <u>G</u> o <u>D</u> ebug <u>T</u> erminal <u>H</u> elp forms.py - Visual Studio Code — — X
ð	create_st	tudent_login_and_databases.sql 🛢 m412.sql 🛢 abcschool.sql 🔮 manage.py 🔮 forms.py 🗴 🐧 🖬 …
_		from .models import Welder
ρ		from .models import PerformanceQualification
		from .models import WelderHistory
41	10	from core.models import WelderStampLov
8	11	
	12	
Ċ7	13	class WelderCreateForm(forms.ModelForm):
	14	<pre>definit(self, *args, **kwargs):</pre>
	15	<pre>super(WelderCreateForm, self)init(*args, **kwargs)</pre>
	16	
	17	<pre>self.fields['welder_stamp'] = forms.ModelChoiceField(queryset=WelderStam</pre>
	18	
	19 20	<pre>self.helper = FormHelper(self) self.helper.form_method = 'POST'</pre>
	20	self.helper.form_method = 'Fost' self.helper.form class = 'form-horizontal'
	22	self.helper.label class = 'col-lg-2'
	23	self.helper.field class = 'col-lg-8'
	24	
	25	<pre>self.helper.add_input(Submit('submit', 'Save Welder'))</pre>
	26	
	27	class Meta:
	28	model = Welder
	29	
	30	class WelderUpdateForm(forms.ModelForm):
	31	<pre>definit(self, *args, **kwargs):</pre>
	32	<pre>self.current_welder_id = kwargs.pop('current_welder_id', None)</pre>
	33	
	34	<pre>super(WelderUpdateForm, self)init(*args, **kwargs)</pre>
	35	
	36	# Combine the available welder_stamp list with the currently assigned st
	37	welder_stamp = WelderStampLov.objects.filter(id_in=Welder.objects.value
\$	38 39	assigned_welder_stamp = WelderStampLov.objects.exclude(idin=Welder.obj
€ maste	39 r*CC⊗18	available_welder_stamp_queryset = welder_stamp assigned_welder_stamp In 1, Col 1 Tab Size 4 UTF-8 LF Python 😁 🌲

Data Analytics

- Analytics is the discovery, interpretation, and communication of meaningful patterns in data; and the process of applying those patterns towards effective decision making
- Organizations may apply analytics to business data to describe, predict, and improve business performance
 - <u>https://en.wikipedia.org/wiki/Analytics</u>

Relational Database

Workshop

Introducing SQL: Foundation of Data Analytics

What is a database?

- A relational "database" management system (RDBMS) organizes data
- The logical structure of the database is based upon the information needs of an organization
 - Entities ("things" of interest to the organization),

AND

 Relationships (how the Entities are associated with each other)

Advantages of a RDBMS

- Establish a centralized, logical view of data
- Minimizes data duplication (i.e. "redundancy")
- Promote data accuracy and integrity
- Capacity of database
- Superior multi-user or concurrent access
- Security
- Retrieve information quickly
- Inter-operability

https://www.bespokesoftwaredevelopment.com/blog/advantages-database-development-business/

Database Terminology

- Table, Entity, Relation, (similar to an Excel Worksheet)
- Row, Record, Instance
- Column, Field, Attribute
- Primary Key unique and mandatory
- Foreign Key a crossreference between tables because it references the primary key of another table
- Relationship created though foreign keys

Open Data Day////

How to introduce SQL?

- Microsoft Access
 - <u>https://products.office.com/en-ca/access</u>
- Microsoft SQL Server
 - <u>https://www.microsoft.com/en-us/sql-server/sql-server-2017</u>
- MariaDB, MySQL
 - https://mariadb.org/
 - <u>https://www.mysql.com/</u>
- Postgresql
 - <u>https://www.postgresql.org/</u>
- Oracle
 - <u>https://www.oracle.com/database/</u>
- Hadoop, Spark, Hive, Pig
 - <u>https://hadoop.apache.org/</u>

A database that ...

- Has full-featured SQL
- Has billions and billions of deployments
- Is a single-file database
- Has public domain source code
- Small footprint
- Has a max DB size of 140 terabytes
- Has a max row size of 1 gigabyte
- Is faster than direct file access

- Aviation-grade quality and testing
- Zero-configuration
- Has ACID (Atomic, Consistent, Isolated, and Durable) transactions, even after power loss
- Has a stable, enduring file format
- Is has extensive, detailed documentation
- Has long-term support (to the year 2050)

SQLite

- "SQLite is the most widely deployed database in the world with more applications than we can count, including several high-profile projects"
 - <u>https://www.sqlite.org/famous.html</u>
- "SQLite is an in-process library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine"
 - <u>https://www.sqlite.org/about.html</u>
- Perfect for learning SQL (the foundation of data analytics)

Exercise 1: Download and Rur^{(////#opendataday} SQLite BD Browser

- Download SQLite
- Download SQLite DB Browser Portable
 - https://sqlitebrowser.org/dl/

Exercise 1: Download and Run SQLite

- Extract the ZIP archive to the Desktop
- Start SQLite
 - SQLiteDatabaseBrowserPortable.exe
- Create a New database
 - open_data_day_2019.db
- Save the database in the Data folder
- Click Cancel when prompted to create a table
- Done!

Exercise 1: Completed

<u>File Edit View</u>	<u>H</u> elp					
New Database	🔒 Open Database	Write	Changes 🛛 🎉 R	levert Changes		
Database Structure	Browse Data	Edit Pragmas	Execute SQL		Edit Database Cell	8 ×
Create Table	Create Index	Modify Tab	ole 🔢 Delete 1	Table	Mode: Text	rt Set as <u>N</u> ULL
Name Tables (0) Indices (0) Views (0)			Туре	Schema	Type of data currently in cell: NULL 0 byte(s) DB Schema Name	Apply & X
					Tables (0) Indices (0) Views (0) Triggers (0)	Туре

20

SQL

Workshop

Introducing SQL: Foundation of Data Analytics

What is SQL?

- SQL stands for Structured Query Language
 - SQL is pronounced S-Q-L or sequel
 - SQL is a standard language for managing, manipulating and querying databases
 - Developed at IBM in the early 1970's
 - In 1986, ANSI and ISO standard groups officially adopted the standard "Database Language SQL" definition
 - Most SQL databases have their own proprietary extensions in addition to the SQL standard
- SQL is the language used to ask questions (query) of a database which will return answers (results)

Why is SQL the foundation of Data Analytics?

- Data engineers and database administrators will use SQL to ensure that everybody in their organization has access to the data they need
- Data scientists will use SQL to load data into their models
- Data analysts will use SQL to query tables of data and derive insights from it

Components of SQL

- SQL consists of three components which offer everything required to manage, maintain and use a database
 - 1. Data Definition Language
 - 2. Data Manipulation Language
 - 3. Data Control Language

Data Definition Language (DDL)

- This component is used to define the structure (or schema) of the database
- For tables there are three main commands:
- CREATE TABLE table_name
 - To create a table in the database
- ALTER TABLE table_name
 - To add or remove columns from a table in the database
- DROP TABLE table_name
 - To remove a table from the database

Exercise 2: Data Definition Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the CREATE TABLE statement into the empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- If the table is created successfully, you should receive the following message:
 - Query executed successfully: CREATE TABLE "MOSQUITO_TRAP_DATA"
- Click Write Changes to make commit the changes permanent
- View the changes in the Database Structure tab

```
CREATE TABLE "MOSQUITO_TRAP_DATA" (
   `SAMPLEID` INTEGER PRIMARY KEY AUTOINCREMENT,
   `TRAP_DATE` NUMERIC,
   `GENUS` TEXT,
   `SPECIES` TEXT,
   `TYPE` TEXT,
   `GENDER` TEXT
);
```

Exercise 2: Data Definition Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the ALTER TABLE statements into the empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- If the table is created successfully, you should receive the following message:
 - Query executed successfully: ALTER TABLE "MOSQUITO_TRAP_DATA"
- Click Write Changes to make commit the changes permanent
- View the changes in the **Database Structure** tab

ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RURALNORTHWEST` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RURALNORTHEAST` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RURALSOUTHEAST` INTEGER;
	•		`RIVERVALLEYEAST` INTEGER;
	•		`RIVERVALLEYWEST` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RESIDENTIALNORTH` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RURALSOUTHWEST` INTEGER;
	SQUITO_TRAP_DATA"		•
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	GOLFCOURSE INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`INDUSTRIALPARK` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	`RESIDENTIALSOUTH` INTEGER;
ALTER TABLE "MO	SQUITO_TRAP_DATA"	ADD COLUMN	TOTAL INTEGER;

Exercise 2: Data Definition Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the DROP TABLE statement into the empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- If the table is created successfully, you should receive the following message:
 - Query executed successfully: DROP TABLE "MOSQUITO_TRAP_DATA"
- Click Write Changes to make commit the changes permanent
- View the changes in the Database Structure tab

DROP TABLE "MOSQUITO_TRAP_DATA";

https://www.sqlite.org/lang_droptable.html

Exercise 2: Data Definition Language

- Create the MOSQUITO_TRAP_DATA table again using the DDL on the next slide
- Click Write Changes to make commit the changes permanent
- View the changes in the Database Structure tab
- Done!

CREATE TABLE "MOSQUITO_TRAP_DATA" (SAMPLEID INTEGER PRIMARY KEY AUTOINCREMENT, TRAP_DATE NUMERIC, `GENUS` TEXT, `SPECIES` TEXT, TYPE TEXT, `GENDER` TEXT, *`*RURALNORTHWEST*`* INTEGER, `RURALNORTHEAST` INTEGER, `RURALSOUTHEAST` INTEGER, `RIVERVALLEYEAST` INTEGER, `RIVERVALLEYWEST` INTEGER, `RESIDENTIALNORTH` INTEGER, `RURALSOUTHWEST` INTEGER, `LAGOON` INTEGER, `GOLFCOURSE` INTEGER, `INDUSTRIALPARK` INTEGER, `RESIDENTIALSOUTH` INTEGER, **`TOTAL` INTEGER**

Exercise 1: Completed

atabase Structure Browse Data Edit Pragm	as Execute SQL		Edit Database Cell	8
Greate Table 🛛 🗞 Create Index 🛛 🕅 Modify	r Table 🛛 🔂 Delete T	able	Mode: Text Text Export	t Set as <u>N</u> ULL
me III Tables (2)	Туре	Schema		
MOSQUITO_TRAP_DATA		CREATE TAE		
SAMPLEID	INTEGER	'SAMPLEID'		
TRAP_DATE	NUMERIC	TRAP_DATI		
GENUS	TEXT	'GENUS' TE		
SPECIES	TEXT	"SPECIES" TE		
📄 ТҮРЕ	TEXT	'TYPE' TEXT		
GENDER	TEXT	'GENDER' T		
RURALNORTHWEST	INTEGER	`RURALNOF	Type of data currently in cell: NULL	Apply
RURALNORTHEAST	INTEGER	`RURALNOF	0 byte(s)	(Add)
RURALSOUTHEAST	INTEGER	'RURALSOU		5
RIVERVALLEYEAST	INTEGER	`RIVERVALLI	DB Schema	•
RIVERVALLEYWEST	INTEGER	`RIVERVALLI	Name	Туре
RESIDENTIALNORTH	INTEGER	`RESIDENTI/	Tables (2)	17PC
RURALSOUTHWEST	INTEGER	<i>`</i> RURALSOU	MOSQUITO_TRAP_DATA	
LAGOON	INTEGER	`LAGOON` I		
GOLFCOURSE	INTEGER	`GOLFCOUF	> sqlite_sequence	
INDUSTRIALPARK	INTEGER	`INDUSTRIA	 Indices (0) Views (0) 	
RESIDENTIALSOUTH	INTEGER	`RESIDENTI/		
TOTAL	INTEGER	'TOTAL' INT	Triggers (0)	
> 📰 sqlite_sequence		CREATE TAE		
📎 Indices (0)				
🗵 Views (0)				
Triggers (0)				

Data Manipulation Language

- This component is used to manipulate data within a table
- There are four main commands:
- SELECT
 - To select rows of data from a table
- INSERT
 - To insert rows of data into a table
- UPDATE
 - To change rows of data in a table
- DELETE
 - To remove rows of data from a table

Exercise 3: SELECT Data Manipulation Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the SELECT statement into the empty SQLite Execute SQL window
 - SELECT COUNT(*) FROM MOSQUITO_TRAP_DATA;
- Click the **Execute SQL** button on the toolbar
- Do you get an answer? Why not?

Exercise 3: INSERT Data Manipulation Language

- Add some data to the MOSQUITO_TRAP_DATA table created in Exercise 2
- Type or copy/paste the INSERT statement into the empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- Click Write Changes to make commit the changes permanent
- View the changes in the **Browse Data** tab
- The MOSQUITO_TRAP_DATA table now has seven rows of data

INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'spencerii', 'Black legs', 'Female', 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'dorsalis', 'Banded legs', 'Female', 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 3); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'euedes', 'Banded legs', 'Female', 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'excrucians', 'Banded legs', 'Female', 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 7); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST. RURALSOUTHEAST. RIVERVALLEYEAST. RIVERVALLEYWEST. RESIDENTIALNORTH. RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'fitchii', 'Banded legs', 'Female', 0,2,0,0,1,0,0,0,0,4,7); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'flavescens', 'Banded legs', 'Female', 6, 5, 8, 0, 0, 0, 5, 0, 0, 3, 1, 28); INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTHEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'vexans', 'Banded legs', 'Female', 3, 168, 1, 21, 38, 8, 16, 0, 0, 3, 32, 290);

Exercise 3: SELECT Data Manipulation Language

- Type or copy/paste the SELECT statement into the empty SQLite Execute SQL window
 - SELECT COUNT(*) FROM MOSQUITO_TRAP_DATA;
- Click the Execute SQL button on the toolbar
- When you execute the query, you are asking the database a question
 - Can you tell me the number of rows in the MOSQUITO_TRAP_DATA table?
- The database gives you an answer (the result) and you should have received the following message:
 - 7 rows returned in 1ms from: SELECT * FROM MOSQUITO_TRAP_DATA;

Exercise 3: SELECT Data Manipulation Language

- What if you want to see all the rows in your database?
 - SELECT * FROM MOSQUITO_TRAP_DATA;
 - Returns all columns and rows in a table
- What if you only want to see the Genus, Species and Total of each row?
 - SELECT GENUS, SPECIES, TOTAL FROM MOSQUITO_TRAP_DATA;
 - Returns only the GENUS, SPECIES, TOTAL columns for each row in a table

Data Manipulation Language

- The WHERE clause
 - Uses operators to extract only those records that fulfill a specified condition
- Used to ask more complicated questions
- SQL will do exactly what you ask, not always what you expect
- "I do not think it means what you think it means"
 - Inigo Montoya

Operator	Description
=	Equal
<>	Not equal. Note: In some versions of SQL this operator may be written as !=
>	Greater than
<	Less than
>=	Greater than or equal
<=	Less than or equal
BETWEEN	Between a certain range
LIKE	Search for a pattern
IN	To specify multiple possible values for a column

https://www.sqlite.org/lang_select.html

Exercise 3: SELECT Data Manipulation Language

- Show the rows that have a mosquito TYPE of "Black legs"
 - SELECT * FROM MOSQUITO_TRAP_DATA WHERE TYPE = 'Black legs';

YOUR TURN

- Write and execute a DML statement to answer the question below:
 - Which mosquito species' were caught in the traps placed in the west river valley?

Exercise 3: UPDATE Data Manipulation Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the UPDATE statement into an empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- You should receive the following message:
 - Query executed successfully: ... (took 1ms, 4 rows affected)

UPDATE MOSQUITO_TRAP_DATA SET GENDER = 'Male' WHERE SAMPLEID IN (1,3,5,7);

https://www.sqlite.org/lang update.html

Data Manipulation Language

- The GROUP BY clause
 - Used in collaboration with the SELECT statement to arrange identical data into groups
- The GROUP BY statement is often used with aggregate functions

Function	Description
AVG	Calculates the average of a set of values
COUNT	Counts rows in a specified table or view
MAX	Gets the minimum value in a set of values
MIN	Gets the maximum value in a set of values
SUM	Calculates the sum of values

Exercise 3: SELECT Data Manipulation Language

YOUR TURN

- Write and execute a DML statement to answer the question below:
 - How many mosquitos of each gender were caught in traps throughout the city?

Exercise 3: DELETE Data Manipulation Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the DELETE statement into an empty SQLite Execute SQL window
- Click the Execute SQL button on the toolbar
- You should receive the following message:
 - Query executed successfully: ... (took 0ms, 4 rows affected)

DELETE FROM MOSQUITO_TRAP_DATA WHERE GENDER = "Male";

https://www.sqlite.org/lang_delete.html

Exercise 3: SELECT Data Manipulation Language

YOUR TURN

- Write and execute a DML statement to answer the question below:
 - At which traps were more mosquitos caught? Rural north east or rural north west?
- Done!

Advanced SQL

- The MOSQUITO database only has one table
- Databases with more than one table require tables to be joined
- Foreign keys create relationships between tables and must be joined in a DML statement

- Download the LED Streetlight Conversion database called odd_streetlight.db
- Execute the query below

SELECT LED_STREETLIGHT.STREETLIGHT_ID, LED_STREETLIGHT.TYPE, LOCATION.LOCATION FROM LED_STREETLIGHT, LOCATION WHERE LED_STREETLIGHT.STREETLIGHT_ID = LOCATION.STREETLIGHT_ID AND LED_STREETLIGHT.STREETLIGHT_ID = 12;

City of Edmonton Open Data Portal

Workshop

Introducing SQL: Foundation of Data Analytics

Using the Open Data Portal

- <u>https://data.edmonton.ca/</u>
- Data sets are usually available in comma separated value (CSV) format
- To use the dataset requires cleaning, importing, exploring and understand the data set
 - Workshop: Exploring & Cleaning Data with OpenRefine
- Requires work

Data Work Flow

How I prepared the data sets for today

- Selected data sets from the Open Data Portal
- Downloaded the CSV and surveyed in Google Sheets
- Cleaned the data set
 - E.g. reformatted dates from MMM DD YYYY to YYYY-MM-DD
- Imported into directly into SQLite tables
- Added primary keys
- Explored data set using DML

Some "<u>Mosquitoes Trap</u> <u>Data</u>" questions

- How many mosquitos caught in 2014? SELECT strftime('%Y', TRAP_DATE) as YEAR, SUM(TOTAL) FROM MOSQUITO_TRAP_DATA WHERE TOTAL <> '' AND TOTAL > 0 GROUP BY YEAR;
- How many mosquitos of each species were caught?
- Which traps caught the most mosquitos?

Some "<u>LED Streetlight</u> <u>Conversion</u>" questions

- How many total streetlights?
- How many streetlights are converted to LED?
- How many streetlights were converted by year? SELECT strftime('%Y', STARTDATE) as YEAR, TYPE, COUNT(STREETLIGHT_ID) FROM LED_STREETLIGHT WHERE TYPE = "LED" GROUP BY YEAR;

SQL and Climate Change

- Connecting and linking various data sets
- Builds an understanding of what that data means
- Data is a universal language, climate change is a global problem

Next steps

- Playing with data and SQL forces you to think and understand the data (builds knowledge)
 - The relationships between data
 - The meaning of those relationships
 - The validity of the data
- SQL is iterative, often a "trial and error" process
 - Don't be afraid to make mistakes
 - Team sport discuss, share, question, collaborate
- Data is everywhere which raises questions of privacy, security and ethics

Experiment

https://www.manchester.ac.uk/discover/news/major-leap-towards-storing-data-at-the-molecular-level/

If there's time ... (I talked too fast)

- Let's (democratically):
 - 1. Choose a dataset not discussed during the workshops
 - 2. Formulate a question related to the dataset
 - 3. Load the data into SQLite
 - 4. Execute some DML to answer the question

Thank you!

- Robb Sombach
 - sombach@ualberta.ca
 - robb@sombach.com
 - LinkedIn

References

- <u>https://opendataday.org/</u>
- <u>https://data36.com/sql-for-data-analysis-tutorial-beginners/</u>
- <u>https://www.datascience.com/blog/to-sql-or-not-to-sql-that-is-the-question</u>
- <u>https://codebeautify.org/sqlformatter</u>