Workshop
Introducing SQL: A Foundation of Data Analytics

Robb Sombach
University of Alberta
Alberta School of Business
Agenda

• Introduction
 • Why SQL?
 • What about Python? R?
 • Data Analytics

• Relational Database
 • What is a database?
 • Terminology
 • SQLite
 • Exercise 1

• SQL
 • Data Definition Language (DDL)
 • Exercise 2
 • Data Manipulation Language (DML)
 • Exercise 3

• Open Data Portal
 • How I prepared for today
Robb Sombach

• Work Experience
 • 15+ years working in the IT industry
 • 10+ years Self-Employed IT Consultant

• IT Positions
 • Systems Analyst / Business Analyst
 • Database Administrator (Oracle / SQL Server)
 • Network Administrator
 • Developer
Robb Sombach

• Teaching Experience
 • 5 years teaching at NAIT
 • Computer Systems Technology (CST)
 • Digital Media and Information Technology (DMIT)
 • 6+ years teaching at University of Alberta
 • Technology Training Centre
 • Alberta School of Business
Resources

All Workshop files can be downloaded here

Introduction

Workshop

Introducing SQL: Foundation of Data Analytics
Goals

• Introduce relational database concepts
• Provides hands-on, real world database experience using data from the City of Edmonton Open Data Portal
• Foster a collaborative workshop
 • Please interrupt and ask questions
Why SQL?

- Simple
- Accessible
- Applicable
- Powerful
- Pervasive
- Valuable
- Universal
Why not Python? R?

- Difficult for beginners
- Complicated syntax
- Requires programming knowledge (logic, algorithms)
- Is SQL better than Python or R?
 - SQL is good for some things
 - Python/R is good for other things
 - Compliment each other
- SQL is a great starting point
Data Analytics

• Analytics is the discovery, interpretation, and communication of meaningful patterns in data; and the process of applying those patterns towards effective decision making.

• Organizations may apply analytics to business data to describe, predict, and improve business performance.

 • https://en.wikipedia.org/wiki/Analytics
Relational Database

Workshop

Introducing SQL: Foundation of Data Analytics
What is a database?

• A relational “database” management system (RDBMS) organizes data
• The logical structure of the database is based upon the information needs of an organization
 • Entities (“things” of interest to the organization),
 AND
 • Relationships (how the Entities are associated with each other)
Advantages of a RDBMS

- Establish a centralized, logical view of data
- Minimizes data duplication (i.e. “redundancy”)
- Promote data accuracy and integrity
- Capacity of database
- Superior multi-user or concurrent access
- Security
- Retrieve information quickly
- Inter-operability

https://www.bespokesoftwaredevelopment.com/blog/advantages-database-development-business/
Database Terminology

- **Table**, Entity, Relation, (similar to an Excel Worksheet)
- **Row**, Record, Instance
- **Column**, Field, Attribute
- **Primary Key** – unique and mandatory
- **Foreign Key** – a cross-reference between tables because it references the primary key of another table
- **Relationship** – created though foreign keys
How to introduce SQL?

• Microsoft Access
 • https://products.office.com/en-ca/access

• Microsoft SQL Server

• MariaDB, MySQL
 • https://mariadb.org/
 • https://www.mysql.com/

• Postgresql
 • https://www.postgresql.org/

• Oracle
 • https://www.oracle.com/database/

• Hadoop, Spark, Hive, Pig
 • https://hadoop.apache.org/
A database that ...

- Has full-featured SQL
- Has billions and billions of deployments
- Is a single-file database
- Has public domain source code
- Small footprint
- Has a max DB size of 140 terabytes
- Has a max row size of 1 gigabyte
- Is faster than direct file access

- Aviation-grade quality and testing
- Zero-configuration
- Has ACID (Atomic, Consistent, Isolated, and Durable) transactions, even after power loss
- Has a stable, enduring file format
- Has extensive, detailed documentation
- Has long-term support (to the year 2050)

https://www.sqlite.org/about.html
SQLite

- “SQLite is the most widely deployed database in the world with more applications than we can count, including several high-profile projects”
 - https://www.sqlite.org/famous.html
- “SQLite is an in-process library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine”
 - https://www.sqlite.org/about.html
- Perfect for learning SQL (the foundation of data analytics)
Exercise 1: Download and Run SQLite BD Browser

• Download SQLite

• Download SQLite DB Browser Portable
 • https://sqlitebrowser.org/dl/
Exercise 1: Download and Run SQLite

• Extract the ZIP archive to the Desktop
• Start SQLite
 • SQLiteDatabaseBrowserPortable.exe
• Create a New database
 • open_data_day_2019.db
• Save the database in the Data folder
• Click Cancel when prompted to create a table
• Done!
Exercise 1: Completed
SQL

Workshop

Introducing SQL: Foundation of Data Analytics
What is SQL?

• SQL stands for Structured Query Language
 • SQL is pronounced S–Q–L or sequel
 • SQL is a standard language for managing, manipulating and querying databases
 • Developed at IBM in the early 1970’s
 • In 1986, ANSI and ISO standard groups officially adopted the standard “Database Language SQL” definition
 • Most SQL databases have their own proprietary extensions in addition to the SQL standard

• SQL is the language used to ask questions (query) of a database which will return answers (results)
Why is SQL the foundation of Data Analytics?

• Data engineers and database administrators will use SQL to ensure that everybody in their organization has access to the data they need

• Data scientists will use SQL to load data into their models

• Data analysts will use SQL to query tables of data and derive insights from it
Components of SQL

• SQL consists of three components which offer everything required to manage, maintain and use a database

 1. Data Definition Language
 2. Data Manipulation Language
 3. Data Control Language
Data Definition Language (DDL)

• This component is used to define the structure (or schema) of the database
• For tables there are three main commands:

 • CREATE TABLE table_name
 • To create a table in the database
 • ALTER TABLE table_name
 • To add or remove columns from a table in the database
 • DROP TABLE table_name
 • To remove a table from the database
Exercise 2: Data Definition Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the CREATE TABLE statement into the empty SQLite Execute SQL window
- Click the **Execute SQL** button on the toolbar
- If the table is created successfully, you should receive the following message:
 - Query executed successfully: CREATE TABLE "MOSQUITO_TRAP_DATA"
- Click Write Changes to make commit the changes permanent
- View the changes in the Database Structure tab
CREATE TABLE "MOSQUITO_TRAP_DATA" (
`SAMPLEID` INTEGER PRIMARY KEY AUTOINCREMENT,
`TRAP_DATE` NUMERIC,
`GENUS` TEXT,
`SPECIES` TEXT,
`TYPE` TEXT,
`GENDER` TEXT
);
Exercise 2: Data Definition Language

• Select the Execute SQL tab in SQLite
• Type or copy/paste the ALTER TABLE statements into the empty SQLite Execute SQL window
• Click the **Execute SQL** button on the toolbar
• If the table is created successfully, you should receive the following message:
 • Query executed successfully: ALTER TABLE "MOSQUITO_TRAP_DATA"
• Click **Write Changes** to make commit the changes permanent
• View the changes in the **Database Structure** tab
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RURALNORTHWEST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RURALNORHEAST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RURALSOUTHEAST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RIVERVALLEYEAST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RIVERVALLEYWEST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RESIDENTIALNORTH` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RURALSOUTHWEST` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `LAGOON` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `GOLFCOURSE` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `INDUSTRIALPARK` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `RESIDENTIALSOUTH` INTEGER;
ALTER TABLE "MOSQUITO_TRAP_DATA" ADD COLUMN `TOTAL` INTEGER;

https://www.sqlite.org/lang_altertable.html
Exercise 2: Data Definition Language

• Select the Execute SQL tab in SQLite
• Type or copy/paste the DROP TABLE statement into the empty SQLite Execute SQL window
• Click the **Execute SQL** button on the toolbar
• If the table is created successfully, you should receive the following message:
 • Query executed successfully: DROP TABLE "MOSQUITO_TRAP_DATA"
• Click Write Changes to make commit the changes permanent
• View the changes in the Database Structure tab
DROP TABLE "MOSQUITO_TRAP_DATA";

https://www.sqlite.org/lang_droptable.html
Exercise 2: Data Definition Language

• Create the MOSQUITO_TRAP_DATA table again using the DDL on the next slide

• Click **Write Changes** to make commit the changes permanent

• View the changes in the Database Structure tab

• Done!
CREATE TABLE "MOSQUITO_TRAP_DATA" (
 `SAMPLEID` INTEGER PRIMARY KEY AUTOINCREMENT,
 `TRAP_DATE` NUMERIC,
 `GENUS` TEXT,
 `SPECIES` TEXT,
 `TYPE` TEXT,
 `GENDER` TEXT,
 `RURALNORTHWEST` INTEGER,
 `RURALNORTH` INTEGER,
 `RURALNORTHEAST` INTEGER,
 `RURALSOUTHEAST` INTEGER,
 `RIVERVALLEYEAST` INTEGER,
 `RIVERVALLEYWEST` INTEGER,
 `RESIDENTIALNORTH` INTEGER,
 `RURALSOUTHWEST` INTEGER,
 `LAGOON` INTEGER,
 `GOLFCOURSE` INTEGER,
 `INDUSTRIALPARK` INTEGER,
 `RESIDENTIALSOUTH` INTEGER,
 `TOTAL` INTEGER
)

https://www.sqlite.org/lang_createtable.html
Exercise 1: Completed
Data Manipulation Language

• This component is used to manipulate data within a table
• There are four main commands:

• SELECT
 • To select rows of data from a table
• INSERT
 • To insert rows of data into a table
• UPDATE
 • To change rows of data in a table
• DELETE
 • To remove rows of data from a table
Exercise 3: SELECT
Data Manipulation Language

• Select the Execute SQL tab in SQLite
• Type or copy/paste the SELECT statement into the empty SQLite Execute SQL window
 • SELECT COUNT(*) FROM MOSQUITO_TRAP_DATA;
• Click the Execute SQL button on the toolbar
• Do you get an answer? Why not?

https://www.sqlite.org/lang_select.html
Exercise 3: INSERT
Data Manipulation Language

• Add some data to the MOSQUITO_TRAP_DATA table created in Exercise 2
• Type or copy/paste the INSERT statement into the empty SQLite Execute SQL window
• Click the **Execute SQL** button on the toolbar
• Click **Write Changes** to make commit the changes permanent
• View the changes in the **Browse Data** tab
• The MOSQUITO_TRAP_DATA table now has seven rows of data
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'spencerii', 'Black legs', 'Female', 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 3);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'dorsalis', 'Banded legs', 'Female', 0, 1, 0, 0, 0, 2, 0, 0, 0, 3);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'euedes', 'Banded legs', 'Female', 1, 1, 0, 0, 2, 0, 0, 0, 0, 4);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'excrucians', 'Banded legs', 'Female', 1, 2, 0, 0, 2, 1, 0, 0, 1, 7);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'fitchii', 'Banded legs', 'Female', 0, 2, 0, 0, 1, 0, 0, 0, 0, 4);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'flavescens', 'Banded legs', 'Female', 6, 5, 8, 0, 0, 5, 0, 0, 3, 28);
INSERT INTO "MOSQUITO_TRAP_DATA" (TRAP_DATE, GENUS, SPECIES, TYPE, GENDER, RURALNORTHWEST, RURALNORTEAST, RURALSOUTHEAST, RIVERVALLEYEAST, RIVERVALLEYWEST, RESIDENTIALNORTH, RURALSOUTHWEST, LAGOON, GOLFCOURSE, INDUSTRIALPARK, RESIDENTIALSOUTH, TOTAL) VALUES ('2014-07-01', 'Aedes', 'vexans', 'Banded legs', 'Female', 3, 168, 1, 21, 38, 8, 16, 0, 3, 290);

https://www.sqlite.org/lang_insert.html
Exercise 3: SELECT
Data Manipulation Language

• Type or copy/paste the SELECT statement into the empty SQLite Execute SQL window
 • SELECT COUNT(*) FROM MOSQUITO_TRAP_DATA;
• Click the **Execute SQL** button on the toolbar
• When you execute the query, you are asking the database a question
 • Can you tell me the number of rows in the MOSQUITO_TRAP_DATA table?
• The database gives you an answer (the result) and you should have received the following message:
 • 7 rows returned in 1ms from: SELECT * FROM MOSQUITO_TRAP_DATA;

https://www.sqlite.org/lang_select.html
Exercise 3: SELECT
Data Manipulation Language

• What if you want to see all the rows in your database?
 • SELECT * FROM MOSQUITO_TRAP_DATA;
 • Returns all columns and rows in a table

• What if you only want to see the Genus, Species and Total of each row?
 • SELECT GENUS, SPECIES, TOTAL FROM MOSQUITO_TRAP_DATA;
 • Returns only the GENUS, SPECIES, TOTAL columns for each row in a table

https://www.sqlite.org/lang_select.html
Data Manipulation Language

• The WHERE clause
 • Uses operators to extract only those records that fulfill a specified condition

• Used to ask more complicated questions

• SQL will do exactly what you ask, not always what you expect

• “I do not think it means what you think it means”
 • Inigo Montoya

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal</td>
</tr>
<tr>
<td><></td>
<td>Not equal. Note: In some versions of SQL this operator may be written as !=</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal</td>
</tr>
<tr>
<td>BETWEEN</td>
<td>Between a certain range</td>
</tr>
<tr>
<td>LIKE</td>
<td>Search for a pattern</td>
</tr>
<tr>
<td>IN</td>
<td>To specify multiple possible values for a column</td>
</tr>
</tbody>
</table>

https://www.sqlite.org/lang_select.html
Exercise 3: SELECT
Data Manipulation Language

• Show the rows that have a mosquito TYPE of “Black legs”
 • SELECT * FROM MOSQUITO_TRAP_DATA WHERE TYPE = 'Black legs';

YOUR TURN

• Write and execute a DML statement to answer the question below:
 • Which mosquito species’ were caught in the traps placed in the west river valley?

https://www.sqlite.org/lang_select.html
Exercise 3: UPDATE Data Manipulation Language

• Select the Execute SQL tab in SQLite
• Type or copy/paste the UPDATE statement into an empty SQLite Execute SQL window
• Click the **Execute SQL** button on the toolbar
• You should receive the following message:
 • Query executed successfully: ... (took 1ms, 4 rows affected)

https://www.sqlite.org/lang_update.html
UPDATE MOSQUITO_TRAP_DATA
SET GENDER = 'Male'
WHERE SAMPLEID IN (1,3,5,7);

https://www.sqlite.org/lang_update.html
Data Manipulation Language

• The GROUP BY clause
 • Used in collaboration with the SELECT statement to arrange identical data into groups

• The GROUP BY statement is often used with aggregate functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>Calculates the average of a set of values</td>
</tr>
<tr>
<td>COUNT</td>
<td>Counts rows in a specified table or view</td>
</tr>
<tr>
<td>MAX</td>
<td>Gets the minimum value in a set of values</td>
</tr>
<tr>
<td>MIN</td>
<td>Gets the maximum value in a set of values</td>
</tr>
<tr>
<td>SUM</td>
<td>Calculates the sum of values</td>
</tr>
</tbody>
</table>

https://www.sqlite.org/lang_aggfunc.html
Exercise 3: SELECT
Data Manipulation Language

YOUR TURN

• Write and execute a DML statement to answer the question below:
 • How many mosquitos of each gender were caught in traps throughout the city?

https://www.sqlite.org/lang_select.html
Exercise 3: DELETE
Data Manipulation Language

- Select the Execute SQL tab in SQLite
- Type or copy/paste the DELETE statement into an empty SQLite Execute SQL window
- Click the **Execute SQL** button on the toolbar
- You should receive the following message:
 - Query executed successfully: ... (took 0ms, 4 rows affected)

https://www.sqlite.org/lang_update.html
DELETE FROM
MOSQUITO_TRAP_DATA WHERE GENDER = "Male";

https://www.sqlite.org/lang_delete.html
Exercise 3: SELECT
Data Manipulation Language

YOUR TURN

• Write and execute a DML statement to answer the question below:
 • At which traps were more mosquitos caught? Rural north east or rural north west?

• Done!

https://www.sqlite.org/lang_select.html
Advanced SQL

• The MOSQUITO database only has one table
• Databases with more than one table require tables to be joined
• Foreign keys create relationships between tables and must be joined in a DML statement
• Download the LED Streetlight Conversion database called odd_streetlight.db
• Execute the query below

```sql
SELECT LED_STREETLIGHT.STREETLIGHT_ID, LED_STREETLIGHT.TYPE, LOCATION.LOCATION
FROM LED_STREETLIGHT, LOCATION
WHERE LED_STREETLIGHT.STREETLIGHT_ID = LOCATION.STREETLIGHT_ID
AND LED_STREETLIGHT.STREETLIGHT_ID = 12;
```

https://www.sqlite.org/lang_select.html
City of Edmonton
Open Data Portal
Workshop
Introducing SQL: Foundation of Data Analytics
Using the Open Data Portal

• https://data.edmonton.ca/

• Data sets are usually available in comma separated value (CSV) format

• To use the dataset requires cleaning, importing, exploring and understand the data set
 • Workshop: Exploring & Cleaning Data with OpenRefine

• Requires work
Data Work Flow

How I prepared the data sets for today

• Selected data sets from the Open Data Portal
• Downloaded the CSV and surveyed in Google Sheets
• Cleaned the data set
 • E.g. reformatted dates from MMM DD YYYY to YYYY-MM-DD
• Imported into directly into SQLite tables
• Added primary keys
• Explored data set using DML
Some “Mosquitoes Trap Data” questions

• How many mosquitos caught in 2014?

```sql
SELECT strftime('%Y', TRAP_DATE) as YEAR, SUM(TOTAL)
FROM MOSQUITO_TRAP_DATA
WHERE TOTAL <> ''
AND TOTAL > 0
GROUP BY YEAR;
```

• How many mosquitos of each species were caught?

• Which traps caught the most mosquitos?
Some “LED Streetlight Conversion” questions

- How many total streetlights?
- How many streetlights are converted to LED?
- How many streetlights were converted by year?

```sql
SELECT strftime('%Y', STARTDATE) as YEAR, TYPE,
COUNT(STREETLIGHT_ID)
FROM LED_STREETLIGHT
WHERE TYPE = "LED"
GROUP BY YEAR;
```

https://www.sqlite.org/lang_datefunc.html
SQL and Climate Change

• Connecting and linking various data sets
• Builds an understanding of what that data means

• Data is a universal language, climate change is a global problem
Next steps

• Playing with data and SQL forces you to think and understand the data (builds knowledge)
 • The relationships between data
 • The meaning of those relationships
 • The validity of the data

• SQL is iterative, often a “trial and error” process
 • Don’t be afraid to make mistakes
 • Team sport – discuss, share, question, collaborate

• Data is everywhere which raises questions of privacy, security and ethics
Experiment

If there’s time ... (I talked too fast)

• Let’s (democratically):
 1. Choose a dataset not discussed during the workshops
 2. Formulate a question related to the dataset
 3. Load the data into SQLite
 4. Execute some DML to answer the question
Thank you!

- Robb Sombach
 - sombach@ualberta.ca
 - robb@sombach.com
 - LinkedIn
References

• https://opendataday.org/
• https://www.datascience.com/blog/to-sql-or-not-to-sql-that-is-the-question
• https://codebeautify.org/sqlformatter